Embedding partial idempotentd-ary quasigroups
نویسندگان
چکیده
منابع مشابه
n-Ary Quasigroups of Order 4
We characterize the set of all n-ary quasigroups of order 4: every n-ary quasigroup of order 4 is permutably reducible or semilinear. Permutable reducibility means that an n-ary quasigroup can be represented as a composition of k-ary and (n− k +1)-ary quasigroups for some k from 2 to n−1, where the order of arguments in the representation can differ from the original order. The set of semilinea...
متن کاملOn reducibility of n-ary quasigroups
An n-ary operation Q : Σ → Σ is called an n-ary quasigroup of order |Σ| if in the equation x0 = Q(x1, . . . , xn) knowledge of any n elements of x0, . . . , xn uniquely specifies the remaining one. Q is permutably reducible if Q(x1, . . . , xn) = P ( R(xσ(1), . . . , xσ(k)), xσ(k+1), . . . , xσ(n) ) where P and R are (n− k+1)-ary and kary quasigroups, σ is a permutation, and 1 < k < n. Anm-ary ...
متن کاملOn reducibility of n-ary quasigroups, II
An n-ary operation Q : Σ → Σ is called an n-ary quasigroup of order |Σ| if in the equation x0 = Q(x1, . . . , xn) knowledge of any n elements of x0, . . . , xn uniquely specifies the remaining one. Q is permutably reducible ifQ(x1, . . . , xn) = P ` R(xσ(1), . . . , xσ(k)), xσ(k+1), . . . , xσ(n) ́ where P and R are (n − k + 1)-ary and k-ary quasigroups, σ is a permutation, and 1 < k < n. An m-a...
متن کاملOn irreducible n-ary quasigroups with reducible retracts
An n-ary operation q : Σn → Σ is called an n-ary quasigroup of order |Σ| if in x0 = q(x1, . . . , xn) knowledge of any n elements of x0, . . . , xn uniquely specifies the remaining one. An n-ary quasigroup q is permutably reducible if q(x1, . . . , xn) = p(r(xσ(1), . . . , xσ(k)), xσ(k+1), . . . , xσ(n)) where p and r are (n− k + 1)-ary and k-ary quasigroups, σ is a permutation, and 1 < k < n. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1979
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1979.80.351